(x^4+8x^2+9)/(x^2-1)

Simple and best practice solution for (x^4+8x^2+9)/(x^2-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^4+8x^2+9)/(x^2-1) equation:


D( x )

x^2-1 = 0

x^2-1 = 0

x^2-1 = 0

1*x^2 = 1 // : 1

x^2 = 1

x^2 = 1 // ^ 1/2

abs(x) = 1

x = 1 or x = -1

x in (-oo:-1) U (-1:1) U (1:+oo)

(x^4+8*x^2+9)/(x^2-1) = 0

(x^4+8*x^2+9)/(x^2-1) = 0 // * x^2-1

x^4+8*x^2+9 = 0

t_1 = x^2

1*t_1^2+8*t_1^1+9 = 0

t_1^2+8*t_1+9 = 0

DELTA = 8^2-(1*4*9)

DELTA = 28

DELTA > 0

t_1 = (28^(1/2)-8)/(1*2) or t_1 = (-28^(1/2)-8)/(1*2)

t_1 = (2*7^(1/2)-8)/2 or t_1 = (-2*7^(1/2)-8)/2

t_1 = (-2*7^(1/2)-8)/2

x^2-((-2*7^(1/2)-8)/2) = 0

1*x^2 = (-2*7^(1/2)-8)/2 // : 1

x^2 = (-2*7^(1/2)-8)/2

t_1 = (2*7^(1/2)-8)/2

x^2-((2*7^(1/2)-8)/2) = 0

1*x^2 = (2*7^(1/2)-8)/2 // : 1

x^2 = (2*7^(1/2)-8)/2

x belongs to the empty set

See similar equations:

| U/5=65 | | 2n+(-2)=-6 | | 37x+1/2-(1x+1/4)=9(4x-7)+5 | | (3x+2)+(7x+4)=8 | | 1/2(x+8)+3/2x-10 | | a-15=17 | | 6+z/9=-5 | | 3(x+0.15)=2(x+0.50) | | 11(1x+10)=132 | | 5x+8-5x=8 | | -16t^2+25=0 | | 2(x-5)=x+8 | | 82=j+9 | | (3x+2)+(7x+4)=0 | | 94=c+6 | | (12x^5-20x^4+16x^3)/(4x^4) | | 3n-(-2)=14 | | x^2+15=x^2+2x+1 | | xy-4x-8y-32=90 | | 7x+8(1x+1/4)=3(6x-9)-8 | | 47=v-6 | | 3x-6(7x-2)=-183 | | p+18=29 | | 6(4y+19)+y=4 | | 3x-2=73 | | x-x^2=-272 | | 1x-(9x-10)+11=12x+3(-2x+1/3) | | 6k-k=-27-4k | | 6y+2=5y+10 | | 12x+7y=-3 | | w+(3w-5)=23 | | a+(-8)=17 |

Equations solver categories